Warning: fopen(/home/virtual/colon/journal/upload/ip_log/ip_log_2025-01.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 95 Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 96
1Yong Loo Lin School of Medicine, National University of Singapore, Singapore
2Department of General Surgery, Sengkang General Hospital, Singhealth, Singapore
3Duke-NUS Medical School, Singapore
4Department of Radiology, Sengkang General Hospital, Singhealth, Singapore
5Department of Dietetics, Sengkang General Hospital, Singhealth, Singapore
6Department of Physiotherapy, Sengkang General Hospital, Singhealth, Singapore
7National Cancer Centre Singapore, Singhealth, Singapore
© 2024 The Korean Society of Coloproctology
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Conflict of interest
Frederick H. Koh is an Editorial Board member of Annals of Coloproctology, but was not involved in the reviewing or decision process of this manuscript. No other potential conflict of interest relevant to this article was reported.
Funding
None.
Author contributions
Conceptualization: all authors; Methodology: all authors; Validation: all authors; Writing–original draft: all authors; Writing–review & editing: all authors. All authors read and approved the final manuscript.
Study | Country | Study design | No. of participants | Imaging modality evaluated |
---|---|---|---|---|
Lin et al. [28] (2021) | Taiwan | Case-control | 263 | BCM |
Cheng et al. [31] (2021) | Hong Kong | Cross-sectional | 1,587 | BIA |
Wang et al. [32] (2016) | China | Cross-sectional | 944 | BIA |
Laksmi et al. [29] (2019) | Indonesia | Cross-sectional | 120 | BIA |
Luengpradidgun et al. [33] (2022) | Thai | Cross-sectional | 50 | BIA |
Alkahtani [34] (2017) | Saudi Arabia | Cross-sectional | 232 | BIA |
Kawakami et al. [30] (2022) | Japan | Cross-sectional | 1,313 | BIA (FFMI) |
Cao et al. [23] (2022) | China | Cross-sectional | 606 | CT |
Hamaguchi et al. [19] (2016) | Japan | Cross-sectional | 541 | CT |
Sato et al. [20] (2022) | Japan | Cross-sectional | 38 | CT |
Kim et al. [24] (2021) | Korea | Cross-sectional | 11,845 | CT |
Moon et al. [21] (2022) | Korea | Cross-sectional | 335 | CT |
Ohara et al. [25] (2020) | Japan | Cross-sectional | 504 | CT |
Tan et al. [22] (2021) | China | Cross-sectional | 569 | CT |
Nakamura et al. [27] (2022) | Japan | Cross-sectional | 512 | MRI |
Heo et al. [26] (2020) | Korea | Cross-sectional | 62 | MRI |
Isaka et al. [10] (2019) | Japan | Cross-sectional | 60 | Ultrasonography |
Sri-On et al. [11] (2022) | Thailand | Cross-sectional | 1,001 | Ultrasonography |
Deng et al. [12] (2022) | China | Case-control | 75 | Ultrasonography |
Deng et al. [13] (2022) | China | Cross-sectional | 235 | Ultrasonography |
Bahsi et al. [14] (2021) | Turkish | Cross-sectional | 103 | Ultrasonography |
Hashida et al. [18] (2022) | Japan | Cohort | 68 | Ultrasonography |
Rao et al. [16] (2022) | India | Cross-sectional | 117 | Ultrasonography |
Hida et al. [15] (2018) | Japan | Cross-sectional | 201 | Ultrasonography |
Wang et al. [17] (2023) | China | Cross-sectional | 130 | Ultrasonography |
Study | Diagnosis of sarcopenia | Muscle parameter | AUC | Cutoff | Sensitivity (%) | Specificity (%) | P-value |
---|---|---|---|---|---|---|---|
Ultrasonography | |||||||
Isaka et al. [10] (2019) | BIA (AWGS) | Prediction of aSMI | - | - | |||
Tibialis anterior thickness | 0.820 | 14.4 mm | <0.01 | ||||
Gastrocnemius thickness | 0.480 | 14.4 mm | 0.49a | ||||
Soleus thickness | 0.760 | 22.9 mm | 0.48a | ||||
Prediction of low grip strength | - | - | |||||
Tibialis anterior echo intensity | 0.680 | 59.0 | <0.01 | ||||
Gastrocnemius echo intensity | 0.740 | 40.7 | 0.01a | ||||
Soleus echo intensity | 0.540 | 63.2 | 0.15 | ||||
Sri-On et al. [11] (2022) | BIA (AWGS) | Rectus femoris thickness | - | ||||
Sarcopenia | 0.920 | ≤11 mm | 90.9 | 92.2 | |||
Severe sarcopenia | 0.950 | ≤10 mm | 92.5 | 97.4 | |||
Male | - | - | |||||
Female | - | - | |||||
Deng et al. [12] (2022) | BIA (AWGS) | Rectus femoris thickness | 0.802 | - | - | - | <0.001 |
Rectus femoris CSA | 0.816 | - | - | - | <0.001 | ||
SWE mean | 0.863 | - | - | - | <0.001 | ||
Deng et al. [13] (2022) | BIA (AWGS) | Rectus femoris thickness | |||||
Male | 0.839 | 52.2 mm | 76.4 | 75.0 | <0.001 | ||
Female | 0.805 | 49.9 mm | 89.5 | 60.0 | <0.001 | ||
Rectus femoris CSA | |||||||
Male | 0.872 | 6.805 cm2 | 90.9 | 67.9 | <0.001 | ||
Female | 0.791 | 6.996 cm2 | 73.7 | 86.7 | <0.001 | ||
Bahsi et al. [14] (2021) | BIA (EWGSOP) | Umbilicus visceral fat thickness | |||||
Male | 0.921 | ≤22.57 mm | 89.0 | 80.0 | 0.003 | ||
Female | 0.834 | ≤24.97 mm | 92.0 | 70.0 | <0.001 | ||
Hida et al. [15] (2018) | BIA (AWGS) | Thigh muscle thickness | - | ||||
Male | 0.710 | <36 mm | 72.0 | 73.9 | |||
Female | 0.740 | <34 mm | 72.2 | 72.4 | |||
Rao et al. [16] (2022) | BIA (AWGS) | Thigh muscle thickness | |||||
Male | 0.748 | 19 mm | 70.0 | 70.0 | <0.001 | ||
Female | 0.594 | 17 mm | 70.0 | 55.0 | 0.10 | ||
Rectus femoris thickness | - | - | |||||
Male | 0.749 | 76.0 | 64.0 | <0.001 | |||
Female | 0.628 | 70.0 | 55.0 | 0.09 | |||
Wang et al. [17] (2023) | DXA (AWGS) | Stiffness | - | ||||
Tibialis anterior | 0.856 | 3.02 m/sec | 84.6 | 81.5 | |||
Gastrocnemius (medial) | 0.864 | 2.26 m/sec | 83.1 | 81.5 | |||
Soleus | 0.722 | 3.33 m/sec | 86.2 | 59.5 | |||
Computed tomography | |||||||
Hamaguchi et al. [19] (2016) | BIA | L3 psoas | - | - | - | - | |
Male | 6.36 cm2/m2 | ||||||
Female | 3.92 cm2/m2 | ||||||
Sato et al. [20] (2022) | BIA (AWGS) | T12 erector spinae CSA | - | ||||
Sarcopenia | 0.720 | 9.41 cm2/m2 | 54.0 | 92.0 | |||
Severe sarcopenia | 0.770 | 8.43 cm2/m2 | 75.0 | 94.0 | |||
Pectoralis CSA | - | - | - | - | - | ||
Moon et al. [21] (2022) | BIA (EWGSOP) | T4 pectoralis, intercostalis, paraspinal, serratus, and latissimus muscle CSA | - | - | - | - | |
Male | 100.06 cm2 | ||||||
Female | 66.93 cm2 | ||||||
T4MI | - | - | - | - | |||
Male | 33.69 cm2/m2 | ||||||
Female | 26.01 cm2/m2 | ||||||
Pectoralis muscle CSA | - | - | - | - | |||
Male | 29.00 cm2 | ||||||
Female | 18.29 cm2 | ||||||
PMI | - | - | - | - | |||
Male | 10.17 cm2/m2 | ||||||
Female | 7.31 cm2/m2 | ||||||
Tan et al. [22] (2021) | BIA (EWGSOP2) | T12 erector spinae, latissimus dorsi, rectus abdominis, obliquus externus, internus abdominis, and internal and external intercostal muscle CSA | - | - | - | - | |
Male | <75.67 cm2 | ||||||
Female | <40.39 cm2 | ||||||
Magnetic resonance imaging | |||||||
Heo et al. [26] (2020) | DXA (AWGS) | L3 paravertebral | - | 0.319 | 67.0 | 66.0 | 0.01 |
Nakamura et al. [27] (2022) | ROC analysis of PSMI and PDFF for low BMI (GLIM criteria) | PSMI (level of the superior mesenteric artery) | - | - | <0.001 | ||
Male | 0.906 | <12.62 cm2/m2 | |||||
Female | 0.771 | <9.77 cm2/m2 | |||||
PDFF | 0.823 | - | - | - | <0.001 | ||
BIA/BCM | |||||||
Lin et al. [28] (2021) | DXA (AWGS) | BCM | - | 94.1 | 98.8 | - | |
Male | 0.945 | ||||||
Female | 0.940 | ||||||
Laksmi et al. [29] (2019) | DXA (AWGS) | Tanita MC-780MA | 0.729 | - | 79.2 | 66.7 | - |
Male | 0.767 | <6.9 kg/m2 | 70.6 | 82.8 | |||
Female | 0.914 | <5.0 kg/m2 | 85.7 | 97.0 | |||
Kawakami et al. [30] (2022) | DXA (AWGS) | BIA | - | ||||
Male | 0.920 | 7.7 kg/m2 | 87.0 | 83.0 | |||
Female | 0.890 | 6.1 kg/m2 | 84.0 | 80.0 | |||
FFMI | - | ||||||
Male | 0.950 | 17.5 | 89.0 | 88.0 | |||
Female | 0.910 | 14.6 | 80.0 | 86.0 |
AUC, area under the curve; BIA, bioimpedance analysis; AWGS, Asian Working Group for Sarcopenia; aSMI, appendicular skeletal muscle index; CSA, cross-sectional area; SWE, shear-wave elastography; EWGSOP, European Working Group on Sarcopenia in Older People; DXA, dual-energy x-ray absorptiometry; T4MI, T4 muscle index (T4CSA [CSA of pectoralis, intercostalis, paraspinal, serratus, and latissimus muscles] divided by height2); PMI, pectoralis muscle index; ROC, receiver operating characteristic; PSMI, paraspinal muscle area/height index; PDFF, proton density fat fraction; BMI, body mass index; GLIM, Global Leadership Initiative on Malnutrition; BCM, body composition monitor; FFMI, fat-free mass index.
aNot significant.
Study | Correlation score | Correlation coefficient |
---|---|---|
Ultrasound and BIA/CT | ||
Bahsi et al. [14] (2021) | VFT (ultrasound) and SMI (BIA): r=0.356, P<0.001 | Pearson, Spearman |
SFT (ultrasound) and SMI (BIA): r=0.267, P=0.006 | ||
Hashida et al. [18] (2022) | Muscle mass (ultrasound) and psoas muscle mass (CT) | Pearson |
Quadriceps thickness: r=0.546, P<0.001 | ||
Biceps thickness: r=0.730, P<0.001 | ||
Suprahyoid CSA: r=0.579, P<0.001 | ||
Hida et al. [15] (2018) | TMT (ultrasound) and aSMI (BIA): r=0.38, P<0.001 | Pearson |
Male: r=0.25, P<0.001 | ||
Female: r=0.44, P<0.0001 | ||
Controlling for sex with partial correlation analysis: r=0.35, P<0.000 | ||
Rao et al. [16] (2022) | TMT (ultrasound) and aSMI (BIA): r=0.402, P<0.001 | Pearson |
RFT (ultrasound) and aSMI (BIA): r=0.438, P<0.001 | ||
CT and BIA | ||
Cao et al. [23] (2022) | CT-derived BIA and BIA: R2=0.897, P<0.0001 | Pearson |
Male: R2=0.790, 95% CI, 0.775–0.853, P<0.0001 | ||
Female: R2=0.711, CI 0.674–0.803, P<0.0001 | ||
Hamaguchi et al. [19] (2016) | PMI (CT) and SMI (BIA): r=0.737, P< 0.001 | Pearson |
Sato et al. [20] (2022) | ESM (CT) and SMI (BIA): r=0.40 | Pearson |
PM (CT) and SMI (BIA): r=0.51 | ||
Kim et al. [24] (2021) | SMA (CT) and ASM (BIA) | Pearson |
Male: r=0.725, P<0.001 | ||
Female: r=0.659, P<0.001 | ||
Moon et al. [21] (2022) | T4CSA (CT) and aSMI (BIA): r=0.82, P<0.001 | Pearson, Spearman |
T4MI (CT) and aSMI (BIA): r=0.68, P<0.001 | ||
PMCSA (CT) and aSMI (BIA): r=0.72, P<0.001 | ||
PMI (CT) and aSMI (BIA): r=0.63, P<0.001 | ||
Ohara et al. [25] (2020) | PMI (CT) and SMI (BIA) | Spearman |
Male: r=0.367, P<0.01 | ||
Female: r=0.382, P<0.01 | ||
Tan et al. [22] (2021) | SMA (CT) and BSM (BIA): r=0.90, P<0.001 | Pearson |
MRI and DXA/BMI | ||
Heo et al. [26] (2020) | Fat degeneration (MRI) and SMI (DXA): r=–0.22, P=0.08 | Pearson |
Nakamura et al. [27] (2022) | PSMI (MRI) and BMI | Spearman |
Male: r=0.477, P<0.001 | ||
Female r=0.534, P<0.001 | ||
PDFF (MRI) and BMI | ||
Male: r=0.552, P<0.001 | ||
Female: r=0.651, P<0.001 | ||
BIA/BCM and DXA | ||
Lin et al. [28] (2021) | BCM and DXA | Pearson |
Development: r=0.956, P<0.001 | ||
Validation: r=0.953, P<0.001 | ||
Cheng et al. [31] (2021) | aSMI (BIA) and DXA | Pearson |
InBody 120a: r2=0.867, P<0.05 | ||
InBody 720a: r2=0.893, P<0.05 | ||
Wang et al. [32] (2016) | BIA and DXA: r2=0.892, P<0.001 | Pearson |
Luengpradidgun et al. [33] (2022) | BIA and CT: r=0.54, P=0.002 | Spearman |
Kawakami et al. [30] (2022) | FFMI (BIA) and DXA: r=0.95 | Pearson |
Alkahtani [34] (2017) | BIA and DXA | Cohen kappa |
Inbodyb: κ=0.80, P<0.001 | ||
Tanitac: κ=0.61, P<0.001 |
BIA, bioimpedance analysis; CT, computed tomography; VFT, visceral fat thickness; SMI, skeletal muscle index; SFT, subcutaneous fat thicknesses; CSA, cross-sectional area; TMT, thigh muscle thickness; aSMI, appendicular skeletal muscle index; RFT, rectus femoris thickness; PMI, pectoralis muscle index; ESM, erector spinae muscle; PM, pectoralis muscle; SMA, skeletal muscle area; ASM, appendicular skeletal muscle mass; T4CSA, cross-sectional area of pectoralis, intercostalis, paraspinal, serratus, and latissimus muscles; T4MI, T4 muscle index (T4CSA divided by height2); PMCSA, cross-sectional area of pectoralis muscles; BSM, whole-body skeletal muscle mass; MRI, magnetic resonance imaging; DXA, dual-energy x-ray absorptiometry; BMI, body mass index; PSMI, paraspinal muscle area/height index; PDFF, proton density fat fraction; BCM, body composition monitor; FFMI, fat-free mass index.
aInBody Co.
bInbody 770 (InBody Co).
cTanita MC-980MA (Tanita Corp).
Modality | AUC | Sensitivity (%) | Specificity (%) | Comment |
---|---|---|---|---|
Ultrasound | 0.767 (0.709–0.806)a | 81.1 (0.744–0.846)a | 73.1 (0.648–0.774)a | Highest sensitivity |
CT | 0.720 | 54.0 | 92.0 | Highest specificity |
MRI | 0.839 | 67.0 | 66.0 | - |
BIA | 0.905 (0.842–0.968)a | 80.7 (0.129–0.679)a | 82.4 (0.191–0.633)a | Most accurate |
Study | Country | Study design | No. of participants | Imaging modality evaluated |
---|---|---|---|---|
Lin et al. [28] (2021) | Taiwan | Case-control | 263 | BCM |
Cheng et al. [31] (2021) | Hong Kong | Cross-sectional | 1,587 | BIA |
Wang et al. [32] (2016) | China | Cross-sectional | 944 | BIA |
Laksmi et al. [29] (2019) | Indonesia | Cross-sectional | 120 | BIA |
Luengpradidgun et al. [33] (2022) | Thai | Cross-sectional | 50 | BIA |
Alkahtani [34] (2017) | Saudi Arabia | Cross-sectional | 232 | BIA |
Kawakami et al. [30] (2022) | Japan | Cross-sectional | 1,313 | BIA (FFMI) |
Cao et al. [23] (2022) | China | Cross-sectional | 606 | CT |
Hamaguchi et al. [19] (2016) | Japan | Cross-sectional | 541 | CT |
Sato et al. [20] (2022) | Japan | Cross-sectional | 38 | CT |
Kim et al. [24] (2021) | Korea | Cross-sectional | 11,845 | CT |
Moon et al. [21] (2022) | Korea | Cross-sectional | 335 | CT |
Ohara et al. [25] (2020) | Japan | Cross-sectional | 504 | CT |
Tan et al. [22] (2021) | China | Cross-sectional | 569 | CT |
Nakamura et al. [27] (2022) | Japan | Cross-sectional | 512 | MRI |
Heo et al. [26] (2020) | Korea | Cross-sectional | 62 | MRI |
Isaka et al. [10] (2019) | Japan | Cross-sectional | 60 | Ultrasonography |
Sri-On et al. [11] (2022) | Thailand | Cross-sectional | 1,001 | Ultrasonography |
Deng et al. [12] (2022) | China | Case-control | 75 | Ultrasonography |
Deng et al. [13] (2022) | China | Cross-sectional | 235 | Ultrasonography |
Bahsi et al. [14] (2021) | Turkish | Cross-sectional | 103 | Ultrasonography |
Hashida et al. [18] (2022) | Japan | Cohort | 68 | Ultrasonography |
Rao et al. [16] (2022) | India | Cross-sectional | 117 | Ultrasonography |
Hida et al. [15] (2018) | Japan | Cross-sectional | 201 | Ultrasonography |
Wang et al. [17] (2023) | China | Cross-sectional | 130 | Ultrasonography |
Study | Diagnosis of sarcopenia | Muscle parameter | AUC | Cutoff | Sensitivity (%) | Specificity (%) | P-value |
---|---|---|---|---|---|---|---|
Ultrasonography | |||||||
Isaka et al. [10] (2019) | BIA (AWGS) | Prediction of aSMI | - | - | |||
Tibialis anterior thickness | 0.820 | 14.4 mm | <0.01 | ||||
Gastrocnemius thickness | 0.480 | 14.4 mm | 0.49 |
||||
Soleus thickness | 0.760 | 22.9 mm | 0.48 |
||||
Prediction of low grip strength | - | - | |||||
Tibialis anterior echo intensity | 0.680 | 59.0 | <0.01 | ||||
Gastrocnemius echo intensity | 0.740 | 40.7 | 0.01 |
||||
Soleus echo intensity | 0.540 | 63.2 | 0.15 | ||||
Sri-On et al. [11] (2022) | BIA (AWGS) | Rectus femoris thickness | - | ||||
Sarcopenia | 0.920 | ≤11 mm | 90.9 | 92.2 | |||
Severe sarcopenia | 0.950 | ≤10 mm | 92.5 | 97.4 | |||
Male | - | - | |||||
Female | - | - | |||||
Deng et al. [12] (2022) | BIA (AWGS) | Rectus femoris thickness | 0.802 | - | - | - | <0.001 |
Rectus femoris CSA | 0.816 | - | - | - | <0.001 | ||
SWE mean | 0.863 | - | - | - | <0.001 | ||
Deng et al. [13] (2022) | BIA (AWGS) | Rectus femoris thickness | |||||
Male | 0.839 | 52.2 mm | 76.4 | 75.0 | <0.001 | ||
Female | 0.805 | 49.9 mm | 89.5 | 60.0 | <0.001 | ||
Rectus femoris CSA | |||||||
Male | 0.872 | 6.805 cm2 | 90.9 | 67.9 | <0.001 | ||
Female | 0.791 | 6.996 cm2 | 73.7 | 86.7 | <0.001 | ||
Bahsi et al. [14] (2021) | BIA (EWGSOP) | Umbilicus visceral fat thickness | |||||
Male | 0.921 | ≤22.57 mm | 89.0 | 80.0 | 0.003 | ||
Female | 0.834 | ≤24.97 mm | 92.0 | 70.0 | <0.001 | ||
Hida et al. [15] (2018) | BIA (AWGS) | Thigh muscle thickness | - | ||||
Male | 0.710 | <36 mm | 72.0 | 73.9 | |||
Female | 0.740 | <34 mm | 72.2 | 72.4 | |||
Rao et al. [16] (2022) | BIA (AWGS) | Thigh muscle thickness | |||||
Male | 0.748 | 19 mm | 70.0 | 70.0 | <0.001 | ||
Female | 0.594 | 17 mm | 70.0 | 55.0 | 0.10 | ||
Rectus femoris thickness | - | - | |||||
Male | 0.749 | 76.0 | 64.0 | <0.001 | |||
Female | 0.628 | 70.0 | 55.0 | 0.09 | |||
Wang et al. [17] (2023) | DXA (AWGS) | Stiffness | - | ||||
Tibialis anterior | 0.856 | 3.02 m/sec | 84.6 | 81.5 | |||
Gastrocnemius (medial) | 0.864 | 2.26 m/sec | 83.1 | 81.5 | |||
Soleus | 0.722 | 3.33 m/sec | 86.2 | 59.5 | |||
Computed tomography | |||||||
Hamaguchi et al. [19] (2016) | BIA | L3 psoas | - | - | - | - | |
Male | 6.36 cm2/m2 | ||||||
Female | 3.92 cm2/m2 | ||||||
Sato et al. [20] (2022) | BIA (AWGS) | T12 erector spinae CSA | - | ||||
Sarcopenia | 0.720 | 9.41 cm2/m2 | 54.0 | 92.0 | |||
Severe sarcopenia | 0.770 | 8.43 cm2/m2 | 75.0 | 94.0 | |||
Pectoralis CSA | - | - | - | - | - | ||
Moon et al. [21] (2022) | BIA (EWGSOP) | T4 pectoralis, intercostalis, paraspinal, serratus, and latissimus muscle CSA | - | - | - | - | |
Male | 100.06 cm2 | ||||||
Female | 66.93 cm2 | ||||||
T4MI | - | - | - | - | |||
Male | 33.69 cm2/m2 | ||||||
Female | 26.01 cm2/m2 | ||||||
Pectoralis muscle CSA | - | - | - | - | |||
Male | 29.00 cm2 | ||||||
Female | 18.29 cm2 | ||||||
PMI | - | - | - | - | |||
Male | 10.17 cm2/m2 | ||||||
Female | 7.31 cm2/m2 | ||||||
Tan et al. [22] (2021) | BIA (EWGSOP2) | T12 erector spinae, latissimus dorsi, rectus abdominis, obliquus externus, internus abdominis, and internal and external intercostal muscle CSA | - | - | - | - | |
Male | <75.67 cm2 | ||||||
Female | <40.39 cm2 | ||||||
Magnetic resonance imaging | |||||||
Heo et al. [26] (2020) | DXA (AWGS) | L3 paravertebral | - | 0.319 | 67.0 | 66.0 | 0.01 |
Nakamura et al. [27] (2022) | ROC analysis of PSMI and PDFF for low BMI (GLIM criteria) | PSMI (level of the superior mesenteric artery) | - | - | <0.001 | ||
Male | 0.906 | <12.62 cm2/m2 | |||||
Female | 0.771 | <9.77 cm2/m2 | |||||
PDFF | 0.823 | - | - | - | <0.001 | ||
BIA/BCM | |||||||
Lin et al. [28] (2021) | DXA (AWGS) | BCM | - | 94.1 | 98.8 | - | |
Male | 0.945 | ||||||
Female | 0.940 | ||||||
Laksmi et al. [29] (2019) | DXA (AWGS) | Tanita MC-780MA | 0.729 | - | 79.2 | 66.7 | - |
Male | 0.767 | <6.9 kg/m2 | 70.6 | 82.8 | |||
Female | 0.914 | <5.0 kg/m2 | 85.7 | 97.0 | |||
Kawakami et al. [30] (2022) | DXA (AWGS) | BIA | - | ||||
Male | 0.920 | 7.7 kg/m2 | 87.0 | 83.0 | |||
Female | 0.890 | 6.1 kg/m2 | 84.0 | 80.0 | |||
FFMI | - | ||||||
Male | 0.950 | 17.5 | 89.0 | 88.0 | |||
Female | 0.910 | 14.6 | 80.0 | 86.0 |
Study | Correlation score | Correlation coefficient |
---|---|---|
Ultrasound and BIA/CT | ||
Bahsi et al. [14] (2021) | VFT (ultrasound) and SMI (BIA): r=0.356, P<0.001 | Pearson, Spearman |
SFT (ultrasound) and SMI (BIA): r=0.267, P=0.006 | ||
Hashida et al. [18] (2022) | Muscle mass (ultrasound) and psoas muscle mass (CT) | Pearson |
Quadriceps thickness: r=0.546, P<0.001 | ||
Biceps thickness: r=0.730, P<0.001 | ||
Suprahyoid CSA: r=0.579, P<0.001 | ||
Hida et al. [15] (2018) | TMT (ultrasound) and aSMI (BIA): r=0.38, P<0.001 | Pearson |
Male: r=0.25, P<0.001 | ||
Female: r=0.44, P<0.0001 | ||
Controlling for sex with partial correlation analysis: r=0.35, P<0.000 | ||
Rao et al. [16] (2022) | TMT (ultrasound) and aSMI (BIA): r=0.402, P<0.001 | Pearson |
RFT (ultrasound) and aSMI (BIA): r=0.438, P<0.001 | ||
CT and BIA | ||
Cao et al. [23] (2022) | CT-derived BIA and BIA: R2=0.897, P<0.0001 | Pearson |
Male: R2=0.790, 95% CI, 0.775–0.853, P<0.0001 | ||
Female: R2=0.711, CI 0.674–0.803, P<0.0001 | ||
Hamaguchi et al. [19] (2016) | PMI (CT) and SMI (BIA): r=0.737, P< 0.001 | Pearson |
Sato et al. [20] (2022) | ESM (CT) and SMI (BIA): r=0.40 | Pearson |
PM (CT) and SMI (BIA): r=0.51 | ||
Kim et al. [24] (2021) | SMA (CT) and ASM (BIA) | Pearson |
Male: r=0.725, P<0.001 | ||
Female: r=0.659, P<0.001 | ||
Moon et al. [21] (2022) | T4CSA (CT) and aSMI (BIA): r=0.82, P<0.001 | Pearson, Spearman |
T4MI (CT) and aSMI (BIA): r=0.68, P<0.001 | ||
PMCSA (CT) and aSMI (BIA): r=0.72, P<0.001 | ||
PMI (CT) and aSMI (BIA): r=0.63, P<0.001 | ||
Ohara et al. [25] (2020) | PMI (CT) and SMI (BIA) | Spearman |
Male: r=0.367, P<0.01 | ||
Female: r=0.382, P<0.01 | ||
Tan et al. [22] (2021) | SMA (CT) and BSM (BIA): r=0.90, P<0.001 | Pearson |
MRI and DXA/BMI | ||
Heo et al. [26] (2020) | Fat degeneration (MRI) and SMI (DXA): r=–0.22, P=0.08 | Pearson |
Nakamura et al. [27] (2022) | PSMI (MRI) and BMI | Spearman |
Male: r=0.477, P<0.001 | ||
Female r=0.534, P<0.001 | ||
PDFF (MRI) and BMI | ||
Male: r=0.552, P<0.001 | ||
Female: r=0.651, P<0.001 | ||
BIA/BCM and DXA | ||
Lin et al. [28] (2021) | BCM and DXA | Pearson |
Development: r=0.956, P<0.001 | ||
Validation: r=0.953, P<0.001 | ||
Cheng et al. [31] (2021) | aSMI (BIA) and DXA | Pearson |
InBody 120 |
||
InBody 720 |
||
Wang et al. [32] (2016) | BIA and DXA: r2=0.892, P<0.001 | Pearson |
Luengpradidgun et al. [33] (2022) | BIA and CT: r=0.54, P=0.002 | Spearman |
Kawakami et al. [30] (2022) | FFMI (BIA) and DXA: r=0.95 | Pearson |
Alkahtani [34] (2017) | BIA and DXA | Cohen kappa |
Inbody |
||
Tanita |
Modality | Advantage | Disadvantage |
---|---|---|
Ultrasound | Cheap | Operator-dependent |
No ionizing radiation | No validated cutoff values | |
Quick to perform | Limited use in patients with obesity | |
Enables evaluation of muscle quantity and quality | ||
CT | Objective | Expensive |
Routinely used in the diagnosis and staging of cancers | Exposes patient to ionizing radiation | |
Requires additional interpretation | ||
MRI | Objective | Expensive |
No ionizing radiation | Long duration | |
Limited availability | ||
BIA | Validated cutoff values | Affected by hydration status and oedema |
Portable | Not widely available | |
Cheap | ||
Enables evaluation of muscle quantity | ||
DXA | Validated cutoff values | Affected by metallic implants and obesity |
Lower radiation compared to CT | Affected by hydration status and oedema | |
Fast | Not widely available in developing countries | |
Enables evaluation of muscle quantity |
Modality | AUC | Sensitivity (%) | Specificity (%) | Comment |
---|---|---|---|---|
Ultrasound | 0.767 (0.709–0.806) |
81.1 (0.744–0.846) |
73.1 (0.648–0.774) |
Highest sensitivity |
CT | 0.720 | 54.0 | 92.0 | Highest specificity |
MRI | 0.839 | 67.0 | 66.0 | - |
BIA | 0.905 (0.842–0.968) |
80.7 (0.129–0.679) |
82.4 (0.191–0.633) |
Most accurate |
BCM, body composition monitor; BIA, bioimpedance analysis; FFMI, fat-free mass index; CT, computed tomography; MRI, magnetic resonance imaging.
AUC, area under the curve; BIA, bioimpedance analysis; AWGS, Asian Working Group for Sarcopenia; aSMI, appendicular skeletal muscle index; CSA, cross-sectional area; SWE, shear-wave elastography; EWGSOP, European Working Group on Sarcopenia in Older People; DXA, dual-energy x-ray absorptiometry; T4MI, T4 muscle index (T4CSA [CSA of pectoralis, intercostalis, paraspinal, serratus, and latissimus muscles] divided by height2); PMI, pectoralis muscle index; ROC, receiver operating characteristic; PSMI, paraspinal muscle area/height index; PDFF, proton density fat fraction; BMI, body mass index; GLIM, Global Leadership Initiative on Malnutrition; BCM, body composition monitor; FFMI, fat-free mass index. Not significant.
BIA, bioimpedance analysis; CT, computed tomography; VFT, visceral fat thickness; SMI, skeletal muscle index; SFT, subcutaneous fat thicknesses; CSA, cross-sectional area; TMT, thigh muscle thickness; aSMI, appendicular skeletal muscle index; RFT, rectus femoris thickness; PMI, pectoralis muscle index; ESM, erector spinae muscle; PM, pectoralis muscle; SMA, skeletal muscle area; ASM, appendicular skeletal muscle mass; T4CSA, cross-sectional area of pectoralis, intercostalis, paraspinal, serratus, and latissimus muscles; T4MI, T4 muscle index (T4CSA divided by height2); PMCSA, cross-sectional area of pectoralis muscles; BSM, whole-body skeletal muscle mass; MRI, magnetic resonance imaging; DXA, dual-energy x-ray absorptiometry; BMI, body mass index; PSMI, paraspinal muscle area/height index; PDFF, proton density fat fraction; BCM, body composition monitor; FFMI, fat-free mass index. InBody Co. Inbody 770 (InBody Co). Tanita MC-980MA (Tanita Corp).
CT, computed tomography; MRI, magnetic resonance imaging; BIA, bioelectrical impedance analysis; DXA, dual-energy x-ray absorptiometry.
AUC, area under the curve; CT, computed tomography; MRI, magnetic resonance imaging; BIA, bioelectrical impedance analysis. 95% Confidence interval.